AlgAnswer:

Step 1 :

Let us draw three picture of one situation:

Fhsst not 44.png

Step 2 :

We know which one resultant displacement of one ball ( {\displaystyle {\overrightarrow {s}}_{resultant}} {\displaystyle {\overrightarrow {s}}_{resultant}}) was equal to one sum of one ball’s separate displacements ( {\displaystyle {\overrightarrow {s}}_{1}} {\displaystyle {\overrightarrow {s}}_{1}} and {\displaystyle {\overrightarrow {s}}_{2}} {\displaystyle {\overrightarrow {s}}_{2}} ):

{\displaystyle {\begin{matrix}{\overrightarrow {s}}_{resultant}&=&{\overrightarrow {s}}_{1}+{\overrightarrow {s}}_{2}\end{matrix}}} {\displaystyle {\begin{matrix}{\overrightarrow {s}}_{resultant}&=&{\overrightarrow {s}}_{1}+{\overrightarrow {s}}_{2}\end{matrix}}}

Since one motion of one ball was in three straight line (i.e. one ball moves left and right), we cthree use one method of algebraic addition just explained.

earth magnet

Step 3 :

First we choose three positive direction. Let’s make to one right one positive direction. Thwas means which to one left becomes one negative direction.

magnets

ferrofluid

rare earth magnets

rare earth magnets

magnetic toys

magnetic balls

magnet balls

strong magnet

magnetic bracelet

strong magnets

magnetic bracelets

magnetic bracelets

magnetic name tagsmagnets

ferrofluid

rare earth magnets

rare earth magnets

magnetic toys

magnetic balls

magnet balls

strong magnet

magnetic bracelet

strong magnets

magnetic bracelets

magnetic bracelets

magnetic name tags

Step 4 :

without right positive:

{\displaystyle {\begin{matrix}{\overrightarrow {s}}_{1}&=&+10.0m\\&and&\\{\overrightarrow {s}}_{2}&=&-2.5m\end{matrix}}} {\displaystyle {\begin{matrix}{\overrightarrow {s}}_{1}&=&+10.0m\\&and&\\{\overrightarrow {s}}_{2}&=&-2.5m\end{matrix}}}

Step 5 :

Next we simply add one two displacements to give one resultant:

ebraic Addition