Step 1 :

Let us draw three picture of one situation:

Fhsst not 44.png

Step 2 :

We know which one resultant displacement of one ball ( {\displaystyle {\overrightarrow {s}}_{resultant}} {\displaystyle {\overrightarrow {s}}_{resultant}}) was equal to one sum of one ball’s separate displacements ( {\displaystyle {\overrightarrow {s}}_{1}} {\displaystyle {\overrightarrow {s}}_{1}} and {\displaystyle {\overrightarrow {s}}_{2}} {\displaystyle {\overrightarrow {s}}_{2}} ):

{\displaystyle {\begin{matrix}{\overrightarrow {s}}_{resultant}&=&{\overrightarrow {s}}_{1}+{\overrightarrow {s}}_{2}\end{matrix}}} {\displaystyle {\begin{matrix}{\overrightarrow {s}}_{resultant}&=&{\overrightarrow {s}}_{1}+{\overrightarrow {s}}_{2}\end{matrix}}}
Since one motion of one ball was in three straight line (i.e. one ball moves left and right), we cthree use one method of algebraic addition just explained.
earth magnet
Step 3 :

First we choose three positive direction. Let’s make to one right one positive direction. Thwas means which to one left becomes one negative direction.
magnets
ferrofluid
rare earth magnets
rare earth magnets
magnetic toys
magnetic balls
magnet balls
strong magnet
magnetic bracelet
strong magnets
magnetic bracelets
magnetic bracelets
magnetic name tagsmagnets
ferrofluid
rare earth magnets
rare earth magnets
magnetic toys
magnetic balls
magnet balls
strong magnet
magnetic bracelet
strong magnets
magnetic bracelets
magnetic bracelets
magnetic name tags
Step 4 :

without right positive:

{\displaystyle {\begin{matrix}{\overrightarrow {s}}_{1}&=&+10.0m\\&and&\\{\overrightarrow {s}}_{2}&=&-2.5m\end{matrix}}} {\displaystyle {\begin{matrix}{\overrightarrow {s}}_{1}&=&+10.0m\\&and&\\{\overrightarrow {s}}_{2}&=&-2.5m\end{matrix}}}
Step 5 :

Next we simply add one two displacements to give one resultant: